
A predictive analysis of the Goldman Sachs

closing price

Abdollah RIDA

March 25, 2019

Abstract

In this report we try to conduct a classical statistical analysis of fi-
nancial time-series to 1) study the Goldman Sachs closing price using
ARIMA/GARCH processes, and 2) leverage these methods to better the
prediction quality of several machine and deep learning models, mainly
recurrent neural networks (RNN). We also discuss the possibility of using
ARIMA/GARCH and Fourier analysis as features to generate realistic
financial time-series through a Generative Adversarial Network [4] [6] ar-
chitecture inspired by [3]. The code and the data are available in [1].

1 Introduction

Financial mathematics is a young field of applications of mathematics which
experienced a huge growth during the last thirty years. It is by now considered
as one of the most challenging fields of applied mathematics by the diversity of
the questions which are raised, and the high technical skills that it requires.

Modeling financial markets is mainly done nowadays through means of con-
tinuous time stochastic processes, but the statistical approach to studying these
time series and forecasting them is still useful.

Our purpose here is to study stock price movements from a statistical stand-
point. We will heavily focus on time series analysis techniques such as ARIMA
and GARCH. We will also discuss how to use these results to better the perfor-
mance of Recurrent Neural Networks (RNN) and discuss how we can leverage
the statistical tools already existing to improve other Neural Network models.
We will conclude by a quick discussion on how to use ARIMA/GARCH and
Fourier analysis to generate realistic time-series using a Generative Adversarial
Network (GAN) based on stacked Long-Short Term Memory (LSTM) cells. A
model highly inspired by [3].

1

2 The data

2.1 Basic description

The data used to fit the model are the daily closing prices of the Goldman Sachs
stock from March 13, 2006 to March 13, 2019, which corresponds to a total of
3272 observations. We save one third of the data to perform validation later.
The data is compiled from Yahoo! Finance (the data is available in [1]) and
covers a daily database denominated in US dollar. We calculate the log-returns
by taking the natural logarithm of the ratio of two consecutive prices, as a good
approximation of daily percentage changes in prices.

A simple statistical description of the data set shows that the highest value
achieved is $273.38 while the lowest one is $52 which corresponds to the 2008
subprime crisis. As for the log-returns, the maximum is 0.23 while the minimum
is -0.21, which shows a really high volatility of the financial asset. The mean
return is 0.0001 with a moderately high standard deviation of 0.023. The returns
are also positively skewed (0.28) and the kurtosis (15.96) suggests evidence of a
distribution with a fat tail.

2

2.2 Stationarity check

Before modeling time index data, we need to check the stationarity, as a lot of
statistical and econometric methods are based on stationarity. We will use the
Augmented Dicky-Fuller (ADF) test.

The ADF tests the null hypothesis that a unit root is present in the auto-
regressive model. The alternative hypothesis is stationarity. Since we’re consid-
ering fitting ARIMA and GARCH models (which are auto-regressive), this test
is a good idea.

Test Statistic -13.505784
p-value 0
Critical value (10%) -2.567
Critical value (5%) -2.862
Critical value (1%) -3.432

Based on the results of the Augmented Dickey–Fuller (ADF) tests as shown
in Table 2, we fail to accept the null hypothesis of a unit root for the returns,
and, hence, stationarity is guaranteed for the log-return series of the Goldman
Sachs stock price.

3 Methodology

3.1 Justification of the ARIMA/GARCH model

One common observation we get out of the economic and financial data is volatil-
ity clustering. Suppose we have noticed that recent daily returns have been un-
usually volatile. We might expect that tomorrow’s return is also more variable
than usual. We can also observe that the squared returns of an asset are usually
positively auto-correlated, i.e. if an asset price made a big move yesterday, it
is more likely to make a big move today. With economic and financial data,
time varying volatility is more common than constant volatility, and accurate
modeling of time varying volatility is of great importance.

In our case, we have already known from the excess kurtosis that an obvious
fat tails displayed in our series, a typical evidence of heteroskedastic effects as
clustering of volatility. We can also observe from the squared log-return that the
squared returns appear to fluctuate around a constant level, but exhibit volatil-
ity clustering. Large changes in the squared returns tend to cluster together,
and small changes tend to cluster together, which also indicates that the series
exhibits conditional heteroscedasticity.

It is even more clear if we plot the sample autocorrelation function (ACF)
and partial autocorrelation (PACF). The sample ACF and PACF show signifi-
cant autocorrelation in the squared log-return series.

As illustrated in the ACF and PACF plot of squared returns, there is clearly
an autocorrelation. The model we are going to look at will attempt to cap-
ture the autocorrelation of squared returns, clustering volatility, as well as the

3

heteroscedasticity. The significance of the lags in both the ACF and PACF in-
dicate we need both AR and MA components for our model. As we know that
ARMA models are used to model the conditional mean of the process given
past information, which however, assumes the conditional variance given the
past is constant. We give the definition of the ARIMA model bellow, which is
just a generalization of the ARMA model. ARMA/ARIMA model alone fails
to capture the volatility clustering behavior. Thus, we will use GARCH process
that has become widely used in econometrics and finance, to correct the heavy
tails and model the randomly varying volatility in Goldman Sachs’s return.

3.2 ARIMA model

Recall that:

Definition 1. Given a time series of data Xt where t is an integer index and
the Xt are real numbers, an ARMA(p′, q) model is given by:(

1−
p′∑
i=1

αiL
i

)
Xt =

(
1 +

q∑
i=1

θiL
i

)
εt

where L is the lag operator, the αi are the parameters of the autoregressive
part of the model, the θi are the parameters of the moving average part and the

4

εt are error terms. The error terms εt are generally assumed to be independent,
identically distributed variables sampled from a normal distribution with zero
mean.

An ARIMA(p, d, q) process expresses this polynomial factorisation property
with p = p′ − d, and is given by:(

1−
p∑

i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt

and thus can be thought as a particular case of an ARMA(p+ d, q) process
having the autoregressive polynomial with d unit roots. (For this reason, no
ARIMA model with d > 0 is wide sense stationary.)

To choose the best order (p, q, d) , we try out different combinations using
a parameter grid-search and select the one with the lowest AIC and BIC in
Python. We find that the best parameters are (5, 1, 0) for the price series and
(2, 1, 0) for the log-returns.

3.2.1 ARIMA on closing price

After fitting the ARIMA process on our closing price series we get the following
results:

The autocorrelation plot is the following:
As we can see from the following figure ARIMA gives a very good approxi-

mation of the real stock price. We will use the predicted price through ARIMA

5

as an input feature into the LSTM because, as we mentioned before, we want to
capture as many features and patterns about Goldman Sachs as possible. We
go test MSE (mean squared error) of 9.184, which by itself is not a bad result
(considering we do have a lot of test data), but still we will only use it as a
feature in the LSTM.

3.2.2 ARIMA on the log-returns

Next, we need to check the residuals after fitting ARIMA(2,1), which should dis-
play heteroscedasticity as discussed previously. We can see this in the following
figures.

The prediction is not as good as what we might have seen with the closing
price series.

6

3.3 GARCH process

As we already detected the autocorrelation effects in our residual/innovation
series, we now need to apply a GARCH(p,q) model in order to estimate the
conditional variance going forward, using:

7

εt = ηt σt

σ2
t = ω +

p∑
i=1

αi ε
2
t−i +

q∑
j=1

βj σ
2
t−j

Where

σ2
t = V ar(εt|εt−1, εt−2, ...)

denotes the conditional variance and ηt a series of iid random variables hav-
ing a probability density function with mean 0 and variance 1.

The model tells us that tomorrow’s variance is a function of today’s squared
innovations, today’s variance, and the weighted average long-term variance.
The estimation of (ω, α, β) can be conducted utilizing the maximum likelihood
method, which is an iterative process that looks for the maximum value of:

−
N∑
i=3

ln(σ2
i) +

ε2i
σ2
i

A model built using the arch package in python yields the following results:

GARCH modeling builds on advances in the understanding and modeling
of volatility. It takes into account excess kurtosis (i.e. fat tail behavior) and
volatility clustering, two important characteristics of financial time series, which
are also observable in any financial time series. It’s theoretically able to pro-
vide accurate forecasts of variances and covariances of returns through modeling

8

time-varying conditional variances. As a consequence, GARCH models have be-
come quite popular in diverse fields as risk management, portfolio management
and asset allocation, option pricing, foreign exchange, and the term structure
of interest rates.

4 Conclusion: Realistic financial data genera-
tion

4.1 Motivation

Access to data is one of the bottlenecks in the development of machine learning
solutions to domain specific problems. The availability of standard datasets
(with associated tasks) has helped advance the capabilities of learning systems
in multiple tasks. The generation of statistically and qualitatively realistic time
series would greatly help many fields where the data is lacking, unreachable
because of legal barriers or greatly unbalanced.

In finance, stock prices are non reproducible random events: we observe a
stock price from 10 years ago to now, and from now to 10 years, but we cannot
experiment. There is no control. Therefore it is hard to escape the stochastic
calculus framework. By generating time series one can have more examples of
financial crisis, more examples of defaulting individuals, and better the overall
prediciton of stock price movements.

Our goal in this section is to discuss the generation of realistic financial time
series by leveraging the work done on previous sections and a GAN [4] [6] using
Long-Short Term Memory (LSTM) cells [5].

4.2 Proposed methodology

We need to understand what affects whether GS’s stock price will move up
or down. It is what people as a whole think. Hence, we need to incorporate
as much information (depicting the stock from different aspects and angles) as
possible.

• Correlated Assets: these are other assets (any type, not necessarily
stocks, such as commodities, FX, indices, or even fixed income securities).
A big company, such as Goldman Sachs, obviously doesn’t ’live’ in an
isolated world - it depends on, and interacts with, many external factors,
including its competitors, clients, the global economy, the geo-political
situation, fiscal and monetary policies, access to capital, etc.

• Fourier Transforms: Along with the daily closing price, we will cre-
ate Fourier transforms in order to generalize several long- and short-term
trends. Using these transforms we will eliminate a lot of noise (random
walks) and create approximations of the real stock movement. Having
trend approximations can help the LSTM-GAN perform better.

9

We therefore add other assets (Morgan Stanley, JP Morgan, etc...) as fea-
tures in our dataframe, and use PCA to build an eigen-portfolio that we will
use to extract features. We also use Fourier analysis to extract approximations
of the time series (more on this in the following subsections) and the previously
discussed ARMA/GARCH modelling to create more features.

4.3 The general architecture

We will use the following architecture, inspired by [2]:

Each modules, generator and discriminator are designed with LSTMs and
one Fully Connected Network. Generator is designed as one-to-many, and gets
one random vector as input, and generates sequential images. Discriminator is
designed as many-to-one model, which get sequential images, and decides what
is real or fake.

4.4 Fourier analysis and RGAN

As you see in the following the more components from the Fourier transform
we use the closer the approximation function is to the real stock price (the 100
components transform is almost identical to the original function - the red and
the purple lines almost overlap). We use Fourier transforms for the purpose of
extracting long- and short-term trends so we will use the transforms with 3, 6,
and 9 components. These will give us more features to work with. We will also
use the 100 component Fourier transform as an input for our RGAN.

10

4.5 LSTM GAN and sine waves

As previously done in the MAP582 project, the RGAN can generate sine waves
with an amazing accuracy. The following results from [3] show that the Recur-
rent GAN (RGAN) is able to ”understand” concepts such as frequancy, phase
and period and generate convincing signals. This ”knowledge” also extends to
smooth signals who are nothing but an extension through Fourier series of the
sine waves.

Figure 1: Results of signal generation from the RGAN paper

Our own implementation on pytorch was unfortunately not as successful.
While our network could easily pick up notions such as phase and period, he
had a lot of difficulties in smoothing the signal.

11

(a): Generated sine waves with
different phases

(b): Generated sine waves with
different phases, periods and

amplitudes

Using less LSTM stacks did greatly improve the smoothness of the generated
fake signal but introduced a bias.

Figure 2: Generated ”sine” wave with less stacks of LSTM

The idea is to use a tensor (which is equal to a 100 components Fourier
transform of the series) as an input in our GAN. [3] have shown that the RGAN
can easily deal with multidimensional time series. We can therefore hope that
the RGAN can generate realistic-looking financial time series approximations
through their 100 components Fourier representation. Another approach is to
use the ARMA/ARIMA prediction as an input. Since it is smoother than the
actual time-series, one can hope that the GAN will have less difficulties dealing
with it.

References

[1] https://github.com/abdollahrida/deeplearning/tree/master/rgan-
pytorch/map565.

12

[2] https://github.com/ckmarkoh/gan-tensorflow.

[3] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued
(medical) time series generation with recurrent conditional gans, 2017.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[6] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,
2014.

13

